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What is HPSSA form?

● Hot Path Static Single Assignment, HPSSA in short, is a data 

structure built upon SSA-like Intermediate Representation (IR).

● The core idea is to introduce τ-functions as definition “filters”,  

similar to the φ-functions of SSA form which are used as 

definition “mergers".

● Using this filtering mechanism, we can filter the hot reaching 

definitions from the cold ones.

● This structure weaves Static Program Information with run-time 

path profile information and facilitates speculative optimizations 

by compilers that were not  possible before.



Objective

● The objective  of our project was to implement the HPSSA 

construction algorithm [ Smriti Jaiswal, Praveen Hegde, and 

Subhajit Roy. 2017. Constructing HPSSA over SSA ] in the LLVM 

compiler framework.

● This Primarily involved writing two compiler passes:

○ One for tau insertion and argument allocation.

○  Another for removing the instrumentation.

● For automated testing, writing a rudimentary path profiler. 

● Ensuring memory efficiency and robustness of implementation. 



Terminology

● (Acyclic) Hot path : Given a set of inputs, and a threshold frequency, the paths that 

are being visited more frequently than this fixed threshold.  

● Buddy Set: A Buddy set is associated with a basic block. A set of paths are buddies if 

they reach the current basic block through same sequence of basic blocks.

● Caloric connector : A caloric connector is associated with a phi instruction. These 

are Basic Blocks where both hot and cold arguments of phi reach simultaneously. 

●  Domination and Dominator Tree: A basic block BB2 is dominated by BB1 if every 

path reaching BB2 must pass through BB1. In Dominator Tree, Parent immediately  

dominates all its Childs.

● IR in LLVM: Modules -> { Global Var, Functions , ... } -> Basic Blocks -> Instructions



Implementation Phases



Representing τ in LLVM IR

● Introduced a new intrinsic with following signature:

def int_tau : DefaultAttrsIntrinsic

                          < [llvm_any_ty] ,

                            [llvm_vararg_ty],

                                       [  ] > ;

● Takes arguments of any type
● Supports Variable Arguments
● CFG verifier is modified to ignore checks on this new intrinsic as 

we do not implement how to convert tau instruction to bitcode 
and will have to eventually remove them anyway.



Getting The Hot Path Profile Information

● A rudimentary path profiler which insert a “counter” function call 

at the end of basic blocks.

● “counter” function records the id of basic block.

● When the program exits we get a sequence of basic blocks => A 

path corresponding to these blocks is registered.

● Run the program on multiple inputs and obtain a list of paths

● A path which is being visited more than a “threshold value” is 

marked as a “Hot Path”.

● Paths are splitted on back edges (Acyclic Path Profiling). Currently 

works for programs with single functions.



Implementation of Path Profiler

● Processes only a single function of program (main)
● Starts new paths from the start of loops (“loop headers”)

○ Store all the backedges (from loop end to loop header )

llvm :: FindFunctionBackedges()

○ Create a basic block, inside which a call is made to counter with a special 
flag (-1)

○ Split the back-edges and insert the basic block in between.

splitBB = llvm :: SplitEdge ( from , to )

○ This ensures that after one iteration a new path will be registered.



An Example CFG...
● We ran our profiler on an example 

program to get its hot paths.

● In the CFG on the left, we have marked 

the hot paths and the corresponding 

caloric connectors for our example 

program.

● We will demonstrate our 

implementation using the same 

example in the subsequent slides. 



Tau Insertion Phase

Tau Insertion Pass consists of the following functions:

● map<BasicBlock *, BitVector> HPSSAPass::getProfileInfo(Function &F)

○ Returns the acyclic hot path profile information from the profiler.

● map<BasicBlock *, bool> HPSSAPass::getCaloricConnector(Function &F)

○  Computes Caloric Connectors from the given hot path information.

● PreservedAnalyses HPSSAPass::run(Function &F, FunctionAnalysisManager &AM)

○ Iterates over the phi functions and insert corresponding tau functions at suitable places.

○ Allocates arguments to the tau functions.

● void HPSSAPass::Search(BasicBlock &BB, DomTreeNode &DTN)

○ Replaces the uses of the phi with its appropriate tau counterpart. 

 



Computing Caloric Connectors

● Traversed the CFG in topological order.

● Iterated over the predecessors of the current basic block.

● Marked the basic blocks hot and cold, depending on the status of predecessor 

and current buddy sets.

● Used std::map<BasicBlock*, bool> to map the basic block pointers to true if 

the basic block is a caloric connector, vice-versa.

● To make the implementation memory efficient, llvm::BitVector was used to 

store and manipulate "buddy-paths", with each index of BitVector denoting a 
hot path.

● Using llvm::BitVector simplified the implementation of basic set operations

○  ANDing two BitVectors. (ORing two BitVectors) and intersectionBuddy 

Set is implemented as a std::vector of BitVectors.



Marking Caloric Connectors

[  { 1 0 1 1 0 }, { 0 1 0 0 1 } ]

[  { 1 0 0 0 0 } ]

[  { 1 0 0 0 0 },  { 0 0 0 1 0 } ,  { 0 1 0 0 0 },  { 0 

0 1 0 0 },  { 0 0 0 0 1 }  ] 

[  { 0 0 0 1 0 },  { 0 1 0 0 0 }  ]

 [  { 0 0 0 1 0 } { 0 1 0 0 0 } ]

 Hot Defn Missing

  [  { 0 0 0 1 0 },  { 0 1 0 0 0 } ]

[  { 0 0 0 1 0 } { 0 1 0 0 0 } ]

[  ] [ { 1 0 0 0 0 } ]

[  ] [ { 1 0 0 0 0 } ]

  Cold Defn Present

  Cold Defn Present

  Cold

  Cold



Inserting Tau Functions

● We traverse the basic blocks in topological order ( using Function :: 

RPOT( )  ) and then iterate over the phi instructions of each block .

● For a given phi instruction, we need to traverse all the basic blocks 

reachable from current basic block through a Hot Path.
● We traverse the basic blocks again in topological order. We stop going 

deep in a path whenever we hit a block which dominates current block 

(or we reach the dominance frontier).

● A tau is inserted if its a caloric connector and a tau is not inserted for 

current phi already. (Information stored in maps isCaloric and 

isInserted).



Allocating Arguments To Tau Functions

● Arguments of tau are a subset of arguments of corresponding phi functions 

that reach through hot path at the current location.

● A structure named defAccumulator stores information about hot definitions. 

○ defAccumulator( phi, currBB ) = { < hotDef, hotPaths > | hotDef is an argument of phi 

and reaches hot to currBB through hotPaths }

● defAccumulator Serve two purpose:

○ Provide arguments for taus if needed.

○ Store hot paths through which the definition reach thus allowing us 

to infer which definition one should pass to successors.



Allocating Arguments To Tau Functions 
(Implementation)

For a given phi

● Traverse the basic blocks in topological order (using Function::RPOT()).
● If a basic block is a caloric connector and no tau has been inserted.
● Check if the current basic block has some hot defn stored in defAccumulator.

○ If it doesn’t have any hot defns then continue to next basic block.

● If all the conditions are met insert a tau with its first argument as the corresponding phi , 
followed by hot defn stored in defAccumulator. Having phi as the first argument will be helpful 
during tau destruction.

● Iterate through all successors
○ If the successor has a common hot path ,which can be efficiently checked by ANDing the two 

bitvectors. Pass the corresponding hot defs flowing through the common path. 
○ Otherwise Ignore.
○ Repeat the procedure on successors ( llvm:: successors( ) )  having common path until we hit the 

dominance frontier. We use the llvm::DominatorTreeAnalysis Class to get dominance  
information.



Changes In IR after the Insertion Pass



Replacing uses of phi with taus

We have modified the SSA form renaming algorithm [Efficiently computing static single 

assignment form and the control dependence graph, Cytron et al.] to fit our purpose, and the 

renaming is done in the following manner:

● Maintain a renaming stack :
○ Renaming_stack ( phi ) = { tau1 , tau2, …. } 

○ The top element ( back )  stores the most recent definition.

● Search ( BB, DTN ) 
○ Replace uses of each phi with its most recent definition.

○ Initialize stack entry for new phi encountered if any, by pushing the phi itself.

○ Push the taus to stacks of its first argument which will be the phi corresponding to which it was 

inserted. ( We ensured that the first argument is phi node in argument allocation )

○ Recurse through childs in Dominator Tree

■ DFS on Dominator Tree using  llvm :: DominatorTreeNode facility

○ Pop the taus ( and not phi ) pushed onto the stacks corresponding to this basic block.



IR after Tau Insertion and Renaming



Tau Destruction Phase

● Destroying tau after its use is straightforward, since the first argument of the tau is 

the phi for which it was inserted, we can assign tau the value of this phi.

● Since LLVM IR does not support assignment instruction, this was done in replace 

steps:
○ Created an alloca instruction.

○ Created a store instruction, to store the value of the phi in the newly created alloca 

variable.

○ Created a load instruction,  loaded the value of the  alloca variable.

○ Replaced all the uses of tau with the new loaded value.

○ Deleted the original tau instruction.

● Note that we could not have simply replaced all uses of tau with phi, since we only 

replace those uses of phi that are dominated by the given tau.



IR After Tau Destruction Pass



Future Work

● Implement a efficient path profiler for testing our pass on large  

programs.

● Code Cleaning and pushing the code upstream the LLVM github 

repository. 

● Leverage the additional path profile information for improving 

fuzzing   techniques.   

● Explore the behaviour of NLP models like Code2Vec on this new 

predictive IR.


