
Department of Computer Science and
Engineering

UGP-II/CS396

Implementation of HPSSA
Construction Algorithm in

the LLVM Compiler
Framework

Authors:
Abhay Mishra, 190017
Mohd Muzzammil,
190503

Supervisors:
Prof. Subhajit Roy

Mr. Awanish Pandey
Mr. Sumit Lahiri

November 2021

Acknowledgements
We are deeply indebted to Prof. Subhajit Roy for allowing us
to work with him. We are thankful to him for having regular meet-
ings despite his busy schedule and helping us making our imple-
mentation more efficient. We would also like to thank Mr. Sumit
Lahiri(PhD CSE, Y19) and Mr. Awanish Pandey(Senior
Engineer, Qualcomm) for their invaluable support whenever we
were stuck, helping us out to make steady progress along the way
and in achieving our objective.
Last but not the least, we would like to thank our families for their
consistent support during the pandemic.

1

Abstract
Hot Path Static Single Assignment, HPSSA in short, is a data struc-
ture built upon the well recognized Static Single Assignment(SSA)
Form of Intermediate Representation(IR) of Programs. HPSSA
form weaves Static Program Information with run-time information
allowing speculative optimizations by compilers. The HPSSA Con-
struction Algorithm [1] takes Hot Path Profile Information and uses
Data Flow Analysis to instrument the CFG of the program in SSA
form. The instrumentation is in the form of tau functions which
serve as a container of the run time profile information. The current
implementation consists of a set of two compiler passes built using
modern LLVM compiler framework. Construction pass inserts tau
function at suitable places, which can be used later by other passes
and destruction pass removes the instrumentation converting the
program back to SSA form. The use of suitable data structures
and CFG traversal routines makes the current implementation ef-
ficient in running time and memory usage.

The project primarily involved writing two compiler passes: one
for tau insertion and argument allocation. Another for removing
the instrumentation. For automated testing of memory efficiency
and robustness of the implementation, a custom path profiler was
built.

2

Contents
1 What is HPSSA form? 4

2 Terminology 4

3 Implementation Phases 5

4 Getting The Hot Path Profile Information 7

5 Implementation of Path Profiler 8

6 Tau Insertion Pass 10

7 Tau Representation in LLVM 10

8 Computing Caloric Connectors 11

9 Allocating Arguments To Tau Functions 15

10 Replacing uses of phi with taus 19

11 Tau Destruction Phase 22

12 Future Work 25

3

1 What is HPSSA form?
Hot Path Static Single Assignment, HPSSA in short, is a data struc-
ture built upon SSA-like Intermediate Representation(IR). The core
idea is to introduce τ -functions as definition “filters”, similar to the
ϕ-functions of SSA form which are used as definition “mergers".
Using this filtering mechanism, we can filter the hot reaching def-
initions from the cold ones. This structure weaves static program
information with run-time path profile information and facilitates
speculative optimizations by compilers that were not possible be-
fore.

2 Terminology
Following terms will be used frequently, so we desribe them below:

• (Acyclic) Hot path: For a program, given a set of inputs
and a threshold frequency, the acyclic paths that are being
visited more frequently than this fixed threshold are called
hot paths of that program.

• Buddy Set: A Buddy Set is associated with a basic block.
A set of hot paths reaching a basic block are called buddies at
the current basic block if they reach the current basic block
through same sequence of basic blocks. A buddy set is there-
fore the collection of buddies.

• Caloric Connector: A caloric connector is associated with
a ϕ-instruction. These are basic blocks where both hot and
cold arguments of a ϕ-instruction reach simultaneously.

• Dominance and Dominator Tree: A basic block BB2 is
dominated by BB1 if every path reaching BB2 must pass
through BB1. A dominator tree is a construction on the CFG
in which each children is immediately dominated by the par-
ent in the CFG.

• Structure of LLVM IR: LLVM IR is structured in the fol-
lowing way(→ denotes contains):
Module -> {Global Var, Functions, Debug Info, ...}
Function -> Basic Blocks -> Instructions

4

3 Implementation Phases
Our Implementation was divided into the following phases, and we
will discuss them at length in the subsequent sections:

1. Getting The Hot Path Profile Information

• Implementation of Path Profiler

2. Tau Insertion Phase

• Representing τ -instruction in LLVM IR

• Computing Caloric Connectors

• Inserting τ -instructions

• Allocating Arguments To τ -instructions

• Allocating Arguments To τ -instructions (Implementa-
tion)

• Replacing uses of ϕ-instruction with corresponding τ -
instructions

3. Tau Destruction Phase

• Deleting the τ -instruction

• Inserting appropriate instruction at its place

5

Figure 1: CFG of an example program.Hot paths and Caloric con-
nectors are have been marked.

6

4 Getting The Hot Path Profile Informa-
tion

The Hot path Profile Information is stored in HotPathSets:

HotPathSets :: map<BasicBlock*, BitVector>
HotPathSets(BB) = HotPath
HotPath :: BitVector, set bits in HotPath signifies
that the hot path with id=index passes through BB.

The routine HPSSAPass::getProfileInfo(&F) takes input in
the following format:

No of Hot paths
<1> No of basic blocks in Hot path
<1> BasicBlock1 BasicBlock2 ...
<2>
<2>
...
...

And Outputs HotPathSets.
The routine simply reads each line, and for each basic block

BB present in a hot path HP, it sets the bit corresponding to HP
in HotPathSets[BB]. Thus, at the end for each basic block BB,
HotPathSets[BB] stores information about the hot paths that passes
through BB. Finally we return HotPathSets.

7

5 Implementation of Path Profiler
The rudimentary path profiler we implemented processes only main
function of the program and skips others. Because we use acyclic
path profile information as input to our HPSSA Pass, we need to
break paths on loop headers(similar to Ball Larus Path Profiling).

The main steps of instrumentation are described below:

1. Initialize count to 0 and open a file bbMap.txt

2. Store all the backedges of the main function.

llvm::FindFunctionBackedges(F, result)
result = { <from, to> | a backedge starts from

"from" and goes to "to" }

3. For each basic block BB in function

(a) Increment the count.

(b) insert a call to counter at the end of BB with count as
the argument.

• We Used
CallInst::Create(Func,Args,NameStr,InsertBefore)
InsertBefore = BB.getTerminator()
// last instruction of basic block

4. Because the values of count uniquely identify a basic block,
we store the mapping between Basic Block in bbMap.txt The
format is:

No of basic blocks
<1> count FunctionName BasicBlockName
<2>
...

5. For each Backedge, we split and insert a new basic block.
This new basic block contains a call to counter with "-1" as
its argument.

8

• We use

llvm::SplitEdge(from,to)
"from" and "to" are basic blocks and were
stored in the beginning

The counter function opens a file "pathList" (or create a new
one if its not already there) and start writing from newline. It will
keep printing the count passed as an argument to this file in a line.
However, Whenever "-1" is passed as an argument it start writing
to a new line . As clear from this description, each line represents
a path.

A simple routine named "bbReader" takes this "pathList" file
and "bbMap.txt" file as input and according to the threshold value
selects path which are visited more than this threshold value. The
"bbMap.txt" file contains the mapping, which will be used to con-
vert the values of count to corresponding Basic Block names. This
routine will write its output to "pathProfile.txt" in the following
format:

No of Hot paths
<1> No of basic blocks in Hot path
<1> BasicBlock1 BasicBlock2 ...
<2>
<2>
...
...

This "pathProfile.txt" will be passed as an input to our
HPSSAPass::getProfileInfo().

9

6 Tau Insertion Pass
Tau Insertion Pass consists of the following functions:

• map<BasicBlock *, BitVector> getProfileInfo(Function
&F): Returns the acyclic hot path profile information from the
profiler.

• map<BasicBlock *, bool> getCaloricConnector(Function
&F): Computes Caloric Connectors from the given hot path
information.

• PreservedAnalyses run(Function &F, FunctionAnalysisManager
&AM): Iterates over the phi functions and insert corresponding
tau functions at suitable places. Allocates arguments to the
tau functions.

• void Search(BasicBlock &BB, DomTreeNode &DTN): Replaces
the uses of the phi with its appropriate tau counterpart.

7 Tau Representation in LLVM
As recommended in LLVM docs on extending LLVM, we have rep-
resented the τ -instruction in LLVM as an intrinsic. The signature
is as follows:

def int_tau : DefaultAttrsIntrinsic
< [llvm_any_ty],

[llvm_vararg_ty],
[] >;

The intrinsic takes argument of any type and supports variable
arguments. CFG verifier is modified to ignore checks on this new
intrinsic as we do not implement how to convert τ -instruction to
bitcode and will have to eventually remove them anyway.

10

8 Computing Caloric Connectors
The function HPSSAPass::getCaloricConnector(Function F) is
the routine that marks the basic blocks as caloric connector. The
function returns a map named isCaloric with the following sig-
nature:

isCaloric :: map<BasicBlock*, Bool>
isCaloric(currBB) = True | if currBB is a caloric connector

False | otherwise

In order to infer whether or not a basic block is a caloric connec-
tor, we need to maintain buddy set information. A buddy set is
represent as:

BuddySet :: map<BasicBlock *, vector<BitVector>>
BuddySet(BB) = {Buddy | Every hot path in Buddy carry same
set of hot definition}
Buddy : A BitVector, each set bit represent a hot path.

In order to keep track of new hot paths that might start from
loop headers(Incubation Nodes), we maintain a set storing all the
hot paths encountered till now. We use allPaths and IncubationPaths:

allPaths :: BitVector
A set bit in allPaths while visiting a basic block BB
signifies that the path with id = index, has been
encountered when we reached BB. e.g. All hot paths starting
from entry block will be always in the set.

IncubationPaths :: BitVector
A set bit in IncubationPaths while visiting a basic block
BB signifies that the path with id = index, has started
(Incubated) from BB. e.g. all hot paths that start from
entry basic block will be in this set while starting from
entry basic block, but for all upcoming basic blocks, these
hot paths will not be present in IncubationPaths

Maintaining allPaths is simple, while visiting basic blocks, we
update allPaths as follows:

allPaths |= IncubationPaths

11

Having all these data structures, The algorithm proceeds as
described below:

1. Traversed the CFG in topological order.

• Function::RPOT() was used for this purpose

• BB is the basic block under consideration.

2. Calculate IncubationPaths

• IncubationPath = allPaths;
IncubationPath &= HotPathSet[BB]; // bitwise AND
IncubationPath ^= HotPathSet[BB]; // bitwise XOR
HotPathSet[currBB] provides information about the
hot paths that pass through current basic blocks

3. If BB is the entry block then BuddySet simply consist of one
BitVector, containing all hot paths starting from this entry
block. i.e.

BuddySet[BB] = { HotPathSet[BB] }

A entry block cannot be a caloric connector and we have
updated the BuddySet so continue to the next basic block.

4. If it is not a entry basic block then iterate over all the prede-
cessors of the current basic blocks.

• Using llvm::predecesors(BasicBlock*)

5. For a predecessor,

(a) if no hot path passes through it, then a cold definition
reaches BB through this predecessor, i.e. A cold path
flows through BB.

(b) Othrewise, A hot path flows through current basic block.
Now, Iterate over all buddies(Each carrying a unique hot
defn) and do the following:

12

i. If buddy and current basic block has no path in com-
mon, then a hot defintion is missing, thus a cold defn
flows through this predecessor block.

ii. If there is a common path, then update the buddy
set information of BB.

(c) The update of Buddy set information must maintain the
invariant (or the property of Buddies) that a set of hot
paths are buddies if they reached the current basic block
by following same set of basic blocks.

6. All hot definition must be passed through each hot path in-
cubating from current basic block, if any. Implementation
wise:

for all buddies:
buddies |= IncubationPaths

7. If BB contains both a hot path and a cold path it is marked
as a caloric connector:

isCaloric[BB] = True

8. Finally after traversing all basic block, return isCaloric.

13

Figure 2: Computing caloric connectors

14

9 Allocating Arguments To Tau Functions
Arguments of tau are a subset of arguments of corresponding phi
functions that reach through hot path at the current location. We
use a structure defAccumulator for storing the information about
hot definitions as suggested in the original paper. The structure of
defAccumulator is as shown below:

defAccumulator(phi, currBB) = frame
frame(hotDef) = hotPaths, "hotDef" flows through

"hotPaths"
phi := A phi function
currBB := current basic block
hotDef := A single hot definition
hotPaths := A set of hotPaths which carried "hotDef"

to the current basic block.

The purpse of defAccumulator is two-fold:

• Provide arguments for taus if needed.

• Store hot paths through which a particular hot definition
reaches current basic block.This allows us to infer which def-
inition would be passed to successor along a hot path.

Implementation Details

The implementation consists of following steps:

1. Traverse the CFG

• We traversed the basic blocks in topological order using
Function::RPOT()

• This ensures that whenever we visit a basic block all of
its immediate predecessors have been visited.

• Thus all the hot definitions needed at the current basic
block must be available at the time of visit.

2. Traverse over each phi of current basic block and initialize the
defAccumulator.

15

• The traversal is done using BasicBlock::phis().
• The LLVM counterpart of different structures used in
defAccumulator are described below:

phi := PhiNode*
currBB := BasicBlock*
hotDef := Value*
hotPaths := BitVector
frame := map<{PhiNode*, BitVector}}
defAccumulator :=

map<{PhiNode*, BasicBlock*}, frame>

• For each argument of phi, check whether it is a hot defi-
nition or not. If it is a hot definition then it flows through
all the hot paths coming to the current block:

defAccumulator(phi,currBB) = frame
frame[arg] = HotPathSet[currBB]

3. For each phi, traverse the basic blocks in topological order
starting from current basic block

• We simply use a copy of current rpo_iterator (corre-
sponding to current basic block being visited).

4. If a tau is present in the block then allocate the hot definition
reaching to the block as an argument to the tau.

5. Pass the Definitions to the successors through hot paths start-
ing from current basic blocks.

• We use LLVM::succesor() and operations on BitVector
to get the hot definitions which should be passed to the
succesors.

6. For a given phi, we stop traversing the CFG when we hit the
dominance frontier of currBB.

• We used LLVM::DominatorAnalysisPass and LLVM::dominates()
for this purpose.

After the execution of algorithm, a basic block in which a tau
is inserted looks like:

16

Figure 3: CFG before tau insertion

17

Figure 4: CFG after tau insertion

18

10 Replacing uses of phi with taus
We have modified the SSA form renaming algorithm [2] to fit our
purpose, and the renaming is done in the following manner:

• Maintain a renaming stack:

– We maintain map that maps a ϕ-instruction with its
corresponding stack.

– Renaming_stack(ϕ) = {ϕ, τ1, τ2, · · · }
– The top element(back) of stack stores the most recent

definition.

• Search(BB, DTN) Procedure

– Replace uses of each ϕ with its most recent definition.

– Initialize stack entry for new ϕ encountered if any, by
pushing the ϕ itself.

– Push the τ -instructions to stacks of its first argument
which will be the ϕ corresponding to which it was in-
serted. (We ensured that the first argument is phi node
in argument allocation)

– Recurse through children of current basic block in the
dominator tree. We use llvm :: DominatorTreeNode
to compute the dominator tree.

– Pop the τ -instructions(and not ϕ) pushed onto the stacks
corresponding to this basic block.

19

Figure 5: CFG before replacing uses

20

Figure 6: CFG after replacing uses

21

11 Tau Destruction Phase
Destroying tau after its use is straightforward. The first argument
of the tau is the phi corresponding to which it was inserted. We
simply assign the value of first argument to the tau. This is equiva-
lent to removing tau and replacing all uses of tau with orignal phi.
The final program is again in its original form (which was in SSA
form).

11.1 Implementation Details

Since LLVM IR does not support replacing RHS of an instructing
with a value of different type (tau:: CallInst and first arg::
PhiNode*, we accomplished the same in indirect manner :

1. Created an alloca instruction and store the original phi

Builder:: IRBuilder<>
origPhi = tau.getOperand(0)
newTau = Builder.CreateAlloca()

2. Created a store instruction, to store the value of the phi in
the newly created alloca variable.

Builder.CreateStore(origPhi,newTau)

3. Created a load instruction, loaded the value of the alloca vari-
able.

tauLoad = Builder.CreateLoad(newTau,newTau.load)

4. Replaced all the uses of tau with the new loaded value.

tau.replaceAllUsesWith(tauLoad)

5. Deleted the original tau instruction.

tau.eraseFromParent()

The function used above all present in LLVM, however there sig-
nature might be different as irrelevant arguments have been om-
mitted for brevity.

22

Figure 7: CFG before tau destruction

23

Figure 8: CFG after tau destruction

24

12 Future Work
1. Implement a efficient path profiler for testing our pass on large

programs.

2. Code Cleaning and pushing the code upstream the LLVM
github repository.

3. Leverage the additional path profile information for improv-
ing fuzzing techniques.

4. Explore the behaviour of NLP models like Code2Vec on this
new predictive IR.

25

References
[1] Smriti Jaiswal, Praveen Hegde, and Subhajit Roy. Construct-

ing hpssa over ssa. In Proceedings of the 20th International
Workshop on Software and Compilers for Embedded Systems,
SCOPES ’17, page 31–40, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. ISBN 9781450350396. doi:
10.1145/3078659.3078660. URL https://doi.org/10.1145/
3078659.3078660.

[2] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. Efficiently computing static sin-
gle assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13(4):451–490, oct 1991. ISSN
0164-0925. doi: 10.1145/115372.115320. URL https://doi.
org/10.1145/115372.115320.

26

https://doi.org/10.1145/3078659.3078660
https://doi.org/10.1145/3078659.3078660
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320

	What is HPSSA form?
	Terminology
	Implementation Phases
	Getting The Hot Path Profile Information
	Implementation of Path Profiler
	Tau Insertion Pass
	Tau Representation in LLVM
	Computing Caloric Connectors
	Allocating Arguments To Tau Functions
	Replacing uses of phi with taus
	Tau Destruction Phase
	Future Work

